
MATHEMATICS OF COMPUTATION 
Volume 68, Number 226, April 1999, Pages 607-631 
S 0025-5718(99)01013-3 

AN OPTIMAL DOMAIN DECOMPOSITION PRECONDITIONER 
FOR LOW-FREQUENCY TIME-HARMONIC 

MAXWELL EQUATIONS 

ANA ALONSO AND ALBERTO VALLI 

ABSTRACT. The time-harmonic Maxwell equations are considered in the low- 
frequency case. A finite element domain decomposition approach is proposed 
for the numerical approximation of the exact solution. This leads to an 
iteration-by-subdomain procedure, which is proven to converge. The rate of 
convergence turns out to be independent of the mesh size, showing that the 
preconditioner implicitly defined by the iterative procedure is optimal. For 
obtaining this convergence result it has been necessary to prove a regularity 
theorem for Dirichlet and Neumann harmonic fields. 

1. INTRODUCTION 

The Maxwell equations read 

o9D 
, = rotH -7, a9t 

0B 
=-rotS, a9t 

where S and H are the electric and magnetic field, D and B the electric and magnetic 
induction, respectively, and J is the density of the electric current. The following 
constitutive relations 

D = E-6 B = iHE 

(where E and ,t are the dielectric and magnetic permeability coefficients, respec- 
tively) are assumed to hold, as well as the Ohm's law 

J= 0S 

(where a is the electric conductivity). The quantities E, ,t and a are in general 
symmetric matrices, depending on the space variable x; E and ,t are assumed to be 
positive definite, whereas a is positive definite in a conductor and vanishing in an 
insulator. 

Received by the editor December 2, 1996 and, in revised form, July 30, 1997. 
1991 Mathematics Subject Classification. Primary 65N55, 65N30; Secondary 35Q60. 
Key words and phrases. Domain decomposition methods, Maxwell equations. 
Partially supported by H.C.M. contract CHRX 0930407. 

(? 1999 American Mathematical Society 

607 



608 ANA ALONSO AND ALBERTO VALLI 

Writing the Maxwell equations in terms of S and KH only, we find 

Ecat = rot Kt-uS, at 

9t =-rotE. at 
We are interested in the so-called time-harmonic case, i.e., we assume that S and 
KH are given by 

S (t, x) = Re [E(x) exp(iat)], 
KH(t, x) = Re[H(x) exp(iat)], 

where E and H are three-dimensional complex-valued vector fields, and a - 0 is a 
given angular frequency. Therefore, the equations become 

i(E1E = rot H- uE, 

ia(1tH o =-rotE, 

and eliminating H we find 

(1.2) rot(,t-1 rot E) - a2(E - ia-lu)E = 0. 

If we are considering the low-frequency case, i.e., the parameter a is small, by 
checking the effective values of the dielectric coefficient E, the magnetic permeability 
,t and the conductivity a for general media, it can be seen that the parameter a 2E 

is much smaller than ,t-1 and au. Therefore, in this case the term a2cE can be 
dropped out, and one is left with 

(1.3) rot(,t-7 rot E) + iauE = 0. 

Formally speaking, the low-frequency model is thus obtained from the general equa- 
tion (1.2) by setting E = 0. Afterwards we will refer to the low-frequency case as 
to the case where E = 0. 

Considering (1.1) or (1.2) in a bounded domain Q c R3, we have to impose the 
boundary condition 

(1.4) nxE= A on(aQ, 
where n is the unit outward normal vector on 9Q and * is a tangential vector on 
aQ. 

Most often, it is assumed that a vector function E is known, satisfying n x E = L 
on 9Q. Then the resulting boundary value problem reads 

rot(A-t1 rot u) - a2(E - iau-l)u = F in Q, 
(1.5) 

(n x u)iaQ = 0 on aQ, 

where u = E - E and F -rot (,t-1 rot E) ( - a1 U)E. 
Let us now make precise some notation. As usual, we indicate by Hk(Q), k > 0, 

the Sobolev space of (classes of equivalence of) real or complex functions belonging 
to L2(Q) together with all their distributional derivatives of order less than or equal 
to k. In particular, L2(Q) = H?(Q). We also consider the Sobolev space HS(Q) for 
s c R, whose definition can be found in Adams [1]. 

It is well known that the trace space of H1(Q) over 9Q is given by the Sobolev 
space H1/2 (aQ); more generally, if Z is a proper (non-empty) subset of OQ, the 
trace space of H1(Q) over Z is given by H1/2(Z). The spaces H-1/2(aQ) and 
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H-'/'(E) are the dual spaces of H1/2(OQ) and H1/2(Z), respectively. The duality 
pairing between these spaces will be denoted by (, ),9- and (., .)E. The norm in 
the Sobolev space HS(E) will be denoted by s, where s c R and A-can be 
either the whole domain Q, or the boundary OQ, or else a suitable surface. 

The space H(rot; Q) (respectively, H(div; Q)) indicates the set of the real or 
complex (vector) functions v c (L2(Q))3 suchi that rotv c (L2(Q))3 (respectively, 
divv C L2(Q)). 

We also need the definition of the tangential divergence of a tangential vector 
field ij. Being given ij c (H-1/2(OQ))3 with (ij n) I aQ = 0, we define the tangential 
divergence divT7 of ij as the distribution in H-3/2(OQ) which satisfies 

((divT71, ?))aQ :=-Qq, (V2*) I aQ)aQ V X, H 3/2 (cQ) 

where 0* c H2(Q) is any extension of $ in Q, and we have denoted by ((.,-)),9- 
the duality pairing between H-3/2(OQ) and H3/2(OQ). Notice that, due to the 
condition (ij n) I a = 0, the right hand side indeed depends only on the value of $ 
on 9Q. 

We can now introduce the Hilbert spaces Xa-Q and XE, where E is a proper 
(non-empty) subset of OQ. The former one is defined as 

XaQ :={ij c (H-1/2(OgQ))31 (ij n)a,9Q = 0 and div ?7 H -1/2(CQ) 

with the norm 

IInIIX. j = IInII-1/2,aQ + I divT? 1-1/2,aQ 

Denoting by , c (H-1/2(OQ))3 the extension of -y by 0 on OQ \ E, the space XE is 

XE := -{y c (H-1/2(Z))3 I (-y n)IE = 0 and div, E H-C/2(OQ) 

endowed with the norm 

II-YOx := 111Y11-1/2,Z + IIdivTyI I-1/2,aQ 

In Alonso and Valli [2] it has been proven that, if either OQ c Cl,l or Q is a convex 
polyhedron, the space Xa-Q is equal, algebraically and topologically, to the space of 
tangential traces of H(rot; Q). Similarly, XE is the space of tangential traces of 

HaQ\E (rot; Q) := {v C H(rot; Q) I (n x V) laQ\E = O}. 

F'urthermore, in [2] it has been shown that there exist two linear and continuous 
extension operators 

Q : Xa9Q y-* H(rot;Q), 
1ZE : XE HaQ\E (rot; Q) 

satisfying 

(n x feaQo caXQ h , (n x ay)aE = X, 

for each 71 E Xa9Q and -y E XE. 
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2. WEAK FORMULATION OF THE PROBLEM 

AND FINITE ELEMENT APPROXIMATION 

We are going to make precise the variational formulation. First of all, we need 
the following notation: 

Ho(rot; Q) {v c H(rot; Q) I Cn x v) laQ = Of) 
H?(rot;Q) {v c H(rot;Q) I rotv = O}, 
Ho(div; Q) {v c H(div; Q) I (n v)10Q = O}, 
H?(div; Q) :{v c H(div; Q) I divv = O}. 

We also assume that the coefficients ,t = (,tij(X))l<i,j<3, E = (Eij(x))1<i,j<3 and 
u = (9ij(x))1<i,j<3 are symmetric matrices with real coefficients belonging to 
L??(Q). The magnetic permeability is uniformly positive definite (UPD from now 
on); namely, there exists a constant ,to > 0 such that 

3 

S Atlm(X) m ? Ato t 2 for almost all x C Q and for all t E C3. 
I,m=l1 

The dielectric coefficient E is assumed to be UPD in the high-frequency case and 0 
in the low-frequency case. The conductivity a can be UPD (when Q is a conductor), 
or else given by a = XQ\Q, where Qo is a (non-empty) subset of Q (representing 
an insulator), XQ\Q0 is the characteristic function of Q \ Qo, and 'a is UPD. In 
particular, the case Qo = Q corresponds to the case of a perfect insulator. 

We introduce in H(rot; Q) the following bilinear form: 

aw,, v) := (/,t-' rot w, rot v)-_at2([E _iat- l(]W, V)) 

where (,.) denotes the (L2(Q))3-scalar product (for complex-valued vector func- 
tions), and we set L(v) := (F,v). 

Definition 2.1. A weak solution of (1.5) is a function u c Ho(rot; Q) such that 

(2.1) a(u, v) = L(v) V v c Ho(rot; Q). 

The high-frequency case (e is assumed to be UPD) has been considered by Leis 
[9]. First of all, the bilinear form a,(., ) has been proven to be coercive in H(rot; Q) 
when a is UPD. Moreover, the FRedholm alternative theorem holds for problem (2.1) 
when a = 0 (i.e., Qo = Q) (see [9]). A unique solvability result has been prIoven by 
Alonso and Valli [4] for the conductivity given by au =UXQ\Qo Qo 7# Q. 

We are mainly interested in the sequel in the low-frequency case (e is taken to 
be 0) for a conductor (a is assumed to be UPD). In that case we can verify at once 
that the bilinear form ao(., ) is continuous and coercive in H(rot; Q); therefore, the 
Lax-Milgram lemma yields 

Theorem 2.2. Let Q be a bounded domain, and assume that E = 0 and a is UPD. 
Then there exists a unique solution of (2.1). 

A different approach is needed in the low-frequency case when the conductivity 
is given by a =XQ\Q0. In this case the problem 

Arot(1-t rot u) + iaou = F in Q, 
(2.2) 

{(n x u),Q = O on OQ, 
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does not have a unique solution, as we can always add the gradient of a harmonic 
function supported in Qo to a solution. Therefore, we have to complete the differ- 
ential model by adding suitable equations. 

Alonso and Valli [3], by means of a perturbation argument, have proposed the 
following problem: 

rot(,-t1 rot u) + iauu = F in Q, 

div(uQo0) = 0 in Qo, 
(2.3) 

(n x u)0aQ = O on oQ, 

((upo * n) r1,,j 1)r0,j = ?V j = 1, ...,p, 

where F0j, are the internal connected components of 0Qo. In [3] it has been proven 
that (2.3) has a unique solution when Qo -7 Q, and the interface 0Qo n O(Q \ Qo) is 
either a C1,1 surface or a convex polyhedral portion of 0Qo. 

Finally, in the case Qo = Q (i.e., a = 0) problem (2.3) reduces to a coercive 
problem in Ho (rot; Q) n H(div; Q) n 7-((e)I, having set 

71(e) := {w c H?(rot; Q) n H?(div; Q) I (n x w)IaQ = o} 

(see Saranen [15], Valli [17]). 
We are now going to present some approximation results that have been obtained 

for problem (2.1) via the finite element method. 
In the low-frequency case for a conductor, the bilinear form ao(., -) is coercive 

in H(rot; Q); therefore, the problem is rather standard, and one only needs to con- 
struct a suitable internal finite dimensional approximation of the space H(rot; Q). 
To this end, the so-called Nedelec finite elements (see Nedelec [12], [13]) can be 
used, as they are conforming in H(rot; Q) (their tangential components are contin- 
uous across the faces of the finite elements). An optimal order error estimate can 
be obtained straightforwardly. 

In the same case, by means of a different approach, Krizek and Neittaanmaki 
[8] proposed a finite element space given by standard Lagrangian piecewise-linear 
vector functions satisfying suitable conditions on the interfaces. In particular, when 
a is a constant, these conditions reduce to the continuity across the interfaces, thus 
furnishing a finite dimensional subspace of (H1 (Q))3. 

Also in the high-frequency case Monk [10] has used the Nedelec finite elements, 
both for the case where a is assumed to be UPD and for a = 0, yielding an optimal 
order error estimate. 

The low-frequency heterogeneous problem (2.3), in which a =XQ\QO Qo 7# Q, 
has been considered in [3]. At first the problem has been rewritten in an equivalent 
two-domain formulation, and then the Nedelec finite elements are employed in 
Q \ Qo, whereas Lagrangian piecewise-polynomial finite elements are used in Qo for 
approximating a scalar potential of the magnetic field. 

Due to the heterogeneous nature of the problem, a natural domain decomposition 
algorithm can be devised, solving the problem iteratively in Qo and in Q \ Qo. The 
convergence of this iterative procedure is proven in [3], where the rate of convergence 
is also shown to be independent of the mesh size h. 

Clearly, it is also interesting to use a domain decomposition technique for solving 
the two subproblems in Qo and in Q \ Qo. For what is concerned with the problem in 
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the perfect insulator QO, is equivalent to the construction of an extension operator 
from Xa9QO into H(rot; Q0) (see Alonso and Valli [2]). Moreover, this last prob- 
lem can be reduced to a non-homogeneous Neumann boundary value problem for 
the Laplace operator, and domain decomposition techniques for its finite element 
approximation are well known. 

In the next section we are going to consider the domain decomposition approach 
to the finite element approximation of the low-frequency conductor problem, namely 
the case where it is assumed that E = 0 and that a is UPD. 

3. THE DOMAIN DECOMPOSITION PROCEDURE 

We consider the low-frequency conductor problem 

{ rot(,t- rot u) + iaou = F in Q, 
(3.1) 

(n x u),aQ = 0on oQ. 

The bilinear form associated to (3.1) is given by 

(3.2) ao(w,v) := j(,t-1rotw rotv+iauw .V), 

and the weak formulation reads as in Definition 2.1. 
Let the bounded domain Q be decomposed in two subdomains Q, and Q2 such 

that Q = Q1 U Q2 and Q1 n Q2 = 0. We will set r = Q1 n Q2. 
In each subdomain we want to solve 

{ rot(t-&1 rot uj) + iauu = F in Qj, 

(n x uj)IaQj\r = 0 on OQj \ r 

with the interface conditions 

(3-3) (nrp X ul)lr[ = (nrp X U2)1lr, 

(3.4) (nrp x ,tu-I rot ul ) I I = (nr[ x ,u -1 rot U2) I][,. 

Set 

(3.5) V { := tvj c H(rot; Qj) I (n x v;)aQj\r =?}, 

(3.6) aj(wj,vj) :=jJ lrotwi rotv? +iauwi v), VWj,Vj e1V7, 

(3.7) Lj(vj) j F . vj. 
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The bilinear forms aj are clearly continuous and coercive in Vj. The variational 
formulation of the two-domain problem reads 

find, (ul,u2) c VI x V2: 

a, (ul, vi) = LI (vI) V v1 c Hq(rot; QI) 

(3.8) (nrp x uI)I][ = (nrp x U2)11[ 

a2(U2,V2)= L2(v2) + L1(R1(nr X V2) I) 

-a,(ul, RI(nr x V2) I) V V2 C V2, 

where R1: Xr -* V1 is any extension operator. 
The equivalence of the formulations (2.1) and (3.8) can be easily proven (see, for 

instance, Alonso and Valli [3], where a similar situation is considered). 
For the numerical approximation, we will use the Nedelec finite elements of the 

first kind (see Nedelec [12]). However, the same results could be proven also for 
the Nedelec finite elements of the second kind (see Nedelec [13]). For the reader's 
convenience, we present here the precise definitions of the former elements. 

Let us assume that Q, Q1 and Q2 are a Lipschitz polyhedrons. Let {Th}h>o be 
a family of triangulations composed by tetrahedrons, where h is their maximum 
diameter. Moreover, assume that each element of Th only intersects either Q1 or 
Q2. Let Pk, k > 1, be the space of polynomials of degree less than or equal to k, 
and denote by P* the space of homogeneous polynomials of degree k. We set 

Sk := {P c (P*)31 p(x) x 0}, Rk := (Pk-l)3 Sk. 

Notice that (Pkl1)3 C Rk c (Pk)3. We will employ the finite element space 

Nj3h {= Vh C H(rot; Qj) VhlK E RkV K G Tj,h} 

and we define 

(3.9) 

Vj,h:= Nk n 

Vk (3.10) Vj,h := jh n H (rot; Qj), 

(3.11) XP,h :={(lnr X V1,h)lr I V1,h C V1,h} = {(nr X V2,h)Ip I V2,h C V2,h}. 

The finite dimensional approximation problem reads 

find, (Ul,h, U2,h) c Vl,h X V2,h: 

al(Ul,h, Vl,h) = LI((VI,h) V VI,h C Vlh 

(3.12) (nr X 
U1,h)I = (nr X U2,h) I 

a2(u2,h,V2,h)= L2(v2,h) + Ll(Rl,h(np X V2,h)1p) 

-al(ul,h, R1,h(nr X V2,h) I) V V2,h C V2,h, 

where R1,h is any extension operator from Xh,p to Vl,h- 
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Let us introduce now for each -Yh c Xh,p the solution E>h rYh of the problem 

E>Iyr Yh C Vj, h 

(3.13) 1 aj(Eh -yh,vj,h) = V V Vj,h V YIh 

(nr x E> 'Yh)1Ir = 'Yh, 

and also the solution Uj,h c Vj?h of 

(3.14) Uij,h c Vjoh aj(iJ,h,vJ,h) Lj(Vj,h) V V3,h CV 

whose existence and uniqueness is a consequence of Lax-Milgram Lemma. Then 
the couple (E%h rAh + Ul,h, E2 r,Ah + U2,h) is a solution to (3.12) if and only if 

(3.15) a2(E2,hAh + U2,h,V2,h) = L2(V2,h) + Ll(El h(np X V2,h)Ip) 

- al(El 'Ah + Ul,h, El%[(np X V2,h)ll) V V2,h c V2,h 

is satisfied. Due to (3.13) and (3.14), this is equivalent to 

(3.16) a2(E2,rAh, E2,F?7h) + a2(f2,h, E2?1,7h) = L2(E2 ,77h) + LI(El 'r,7h) 
- al(E% hAh, E%,h) - al(Ul,h,EI h,h) V 1)h C XX,h- 

We define the Steklov-Poincare operators Sj,h, j 1, 2, in the following way: 

(3.17) ((Sj,hYh, nh))h aj (Eh Yh, E>?h) V Yh,17h C rX,h, 

where ((,))h denotes the duality pairing between (Xi-',h)' and XF,h- 
Define moreover 

((h,?rh))h := L1(El,Xh) - al ('l,h, El% r?h) 

+ L2(E2 r,7h) - a2(u2,h, E2,?77h) V 1)h C Xi-',h- 

Problem (3.12) is therefore reduced to finding 

(3.18) Ah C XFX,h (((Sl,h + S2,h)Ah, lh))h = ((h, Nh))h V h C Xr',h- 

We will see that the operators Sj,h are continuous and coercive in Xi-',h; hence, 
for solving (3.18) we can apply the Richardson method with one of these operators 
(say, S2,h) as a preconditioner. 

In other words, given A? C XF,h, for each m > 0 solve 

(3.19) A 1 =A OS~[h -h S2x[h (Sl,h + S2,h)Ahm] 
- (1 - O)AM + OS1((h - Sl,hAh). 

By proceeding in a standard way (see, for instance, Alonso and Valli [3], Section 5, 
for a similar computation), it can be seen that (3.19) is equivalent to the following 
iteration-by-subdomain algorithm: being given A0 c XF',h, for each m > 0 solve 

mh1 Vl,h 

(3.20) j a1(um+1 
I,Vl,h) LI(Vl,h) V Vl,h C Vlh 

(np x u1)I = AM 
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(3.21) U2h+ e V2,h: a2(Ut+1 ,V2,h) = L2(V2,h) + LI(Eh,r(np X V2,h)ll) 

- ai(u7 +i1, El%,(np X V2,h)Ir) V V2,h E V2,h, 

and pose 

(3.22) Am+' := (1 - O)Am + O(np X Uth)rlp 

The convergence of the sequence Am constructed in (3.19) is a consequence of 
the following abstract theorem. 

Theorem 3.1. Let X be a complex Hilbert space and let S1,h and S2,h be two 
linear operators from a finite dimensional space Xh C X into its dual X1. Let X,, 
s = 1,...,Mh, a basis of Xh. Define the matrices Sj,h associated to the operators 
Sj,h as 

(Sj,h-y,Y)h := ((Sj,h-Yh,nh))h V -y< C CMh, j = 1,2, 

where (, -)h denotes the euclidean scalar product in CMh and 
Mh Mh 

(3.23) "Yh Z Y'sx3 X nh Z 'rsXsX 
s=1 s=1 

Let us assume that there exist two constants C0 > 0 and C2 > 0, independent of h, 
such that 

(3.24) |((Sl,h-yh,nh))hj < C1 11h 
1 X InhIX V -Yh, ?7h C Xh, 

(3.25) J((S2,h-Yh,-Yh))hj > C211 YhlX V Yh EXh, 

(3.26) Re((Sl,h-Yh, -Yh))h Re((S2,h-Yh, -Yh))h 
(3. 26) ~+ Im(~ (Sl,h-Yh, Yh )) h , Im(~ (52,h-Yh, - Yh) ) h >- ? V -Yh Xh - 

Then each eigenvalue v, of S2jI(Sl,h + S2,h) satisfies 

- < 2Re v S = 1s *--, Mh, 

where 

C* :-m (in 1,2 C2 

Therefore, for any 0 c (0, C*) one has 

122 1 Vsl < - Rev, V s = 1,...Mh, 

and the preconditioned Richardson iterations converge with a rate independent of 
h. 

Proof. The proof is similar to that of Theorem 7.2 in [3]. However, for the reader's 
convenience we will give it in complete detail. 

If v is an eigenvalue of S2-JSl,h ? S2,h) 2I ? S2hSl,h, we can write v 1 ? , 

where iN is an eigenvalue of S2hSl,h. The corresponding eigenvector y C CMh, 
-y 0 0, satisfies Sl,h-y = sS2,h-Y; therefore, 

w hSl,hhehr hh))h = ih oS2,hYh n eih))h) 

where -Yh Xh iS the function defined in (3.23). 
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Writing ' = ?l + i i2, rl, K2 c R, we have 

Re((S1,hYh, Yh))h = ,jRe((S2,h_Yh, Yh))h - 
N2Im((S2,h_Yh, Yh))h, 

Im((Sl,h1 h, yh))h - KllIm((S2,hYh, Yh))h + K2Re((S2,hYh, yh))h. 

Multiply now these equations by Re((S2,h-yh, _Yh))h and Im((S2,h_Yh, _Yh))h, respec- 
tively: by adding the results we find 

ji [(Re((S 2,hYh, _Yh))h) + (Im((S2,hYh, Yh))h)2] 

=Re((Sl,h_Yh, -Yh))h Re((52,h_Yh, -Yh))h 

+ Im((S l,hYh, 'Yh))h Im((S2,h_Yh, _Yh))h. 

From (3.25) we have that J((S2,hYh,<Yh))hI 0; therefore, (3.26) yields 'i > 0. 
On the other hand, from (3.24), (3.25) it follows 

2 _ S((Sl,h_Yh<h))h1 2 C1 

|((S2,h-Yh, h))h12 - C2 

therefore, 

R e v _ _ _ _ _ _ _ > 2 
I V12 1 + 21cj + Jr,12 >2 1 + 2n,1 + ( c1)2. 2 ~~~~~~~~~2~C 

Notice now that the function 

1 + 26 + ( C2 )2 

is strictly increasing when Ci > C2, strictly decreasing when Ci < C2 and con- 
stantly equal to 1 when C0 = C2. Moreover, 

F(?) 2 lim F(Q) = 1; 

hence, C* is the infimum of F for ( > 0. 

The proof of the convergence of the iterations (3.19) reduces now to verify that 
the operators S1,h and S2,h satisfy the assumptions of Theorem 3.1, i.e., (3.24)- 
(3.26). 

Noting that 

Re((Sj,hyh,-yh))h - j AlIrotE.h I2, 

Im(l(Sj,h_h, yh))h = a JuE E>Ih 2, 

estimate (3.26) is trivially satisfied. 
By using the coerciveness of a2(., -) and the following tangential trace inequality 

(see Alonso and Valli [2]) 

II1(nr, X V)lrI112 < C*IIvIJ2 xr < H(rot;Q2) 

we have 

J((S2,h_Yh,_YhNIh > QJIE2 rh 
1 O2 + II rot Erh, I10Q2) > C 2lhl hence,hlh,IhIIh - E~,~yh I,Q2 2 O,Q2) ?0 2olds I//3~~~~\\ > 20 r 2 t' h I 2\ YhlX 

hence, (3.25) holds. 
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The proof of (3.24) is more difficult. The crucial point is the proof of the conti- 
nuity of the extension operator Eh uniformly with respect to h. Let us start by 
introducing for each 6 > 0 the space 

X9Q := 1{1 c (H8 (OQ))3 ( n)IaQ = 0 and divT7 C H6(OQ)}, 

and for each r > 0 the space 

Hr(rot;Q) := {v C (Hr(Q))3 I rotv c (Hr(Q))3}, 

endowed with the following norms, respectively: 

I X1 Iy6 = (I 1711 ,9Q + I divT 8I 1,Q) /2 

l l l l ( ) = (I ||V |1 2Q + ||r tVIl 1 2 ) 1/2 IV IHr(rot;Q) : r( v II rotv 2)/ 

Let us denote by FI, : Xr2 - VI the extension operator which at each -y c Xr 
associates Fl,r-y such that 

{ F1, ry c VI: 

((FI,r,y, vi))Q 0 = ? V vi c Ho(rot; Q) 

(nr, x Fl,r,-)ltr = a)i 

where 

((wl,vl))Ql j (rotwi *rotVI +IwI VI) 

The existence of such an operator is guaranteed provided that we can characterize 
Xr2 as the space of tangential traces on F of V1. In that case, as a consequence of 
the closed graph theorem, it easily follows that F1I, is a continuous operator, i.e., 

(3.27) 1 |FI,r|-y IH(rot;Q) <CO IIYI Xr V -y c Xr. 

The needed characterization result on Xr2 was proved in [2], under the assumption 
that F is either a C1,1 surface or a convex polyhedral portion of 9Q1. 

Finally, introduce the extension operator Fh Xh,r' -* Vl,h, which is the finite 
dimensional counterpart of Fl,r: 

Fhyh EVl,h 

((Fh ,Yh,Vl,h))Ql 0 ? V 
VI,h 

E V? 

(l(nr X Fh Yh) Ir = 'Yh- 

We need the following regularity result, which is Proposition 3.7 in Amrouche, 
Bernardi, Dauge and Girault [5]. Let us set 

XT H(rot; Q) n Ho(div; Q), 
XN Ho (rot; Q) n H(div; Q), 

both endowed with the norm 

I vlIo,Q + ? divvlIo,Q + ? rot vlo,Q. 

Theorem 3.2. Let Q be a Lipschitz polyhedron. Then there exists sQ E (1/2, 1) 
such that the spaces XT and XN are both continuously imbedded in (Hs (Q))3. 



618 ANA ALONSO AND ALBERTO VALLI 

We notice that so only depends on the geometry of Q. It is related to the 
exponent of maximal regularity of the solutions to the Laplace operator with L2 (Q) 
on the right-hand side and homogeneous Dirichlet or Neumann boundary datum 
(see Amrouche, Bernardi, Dauge and Girault [5], Remark 3.8). 

The proof of (3.24) is based on the following three theorems, which will be proven 
in the Sections 4, 5 and 6. From now on the subdomain Q1 is always assumed to 
be a Lipschitz polyhedron. Finally, set -Q := SQ-1/2, where sQ is as in Theorem 
3.2. 

Theorem A. Assume that 1r is a convex portion of 9Q%. Given 6 c (0, KQ1, 
there exists K1 > 0 such that for all -y c Xr with a X,9Q1 one has Fl,][Y E 

H1/2+6 (rot; Q1) and 

H2? (rot;Qj) <K1 a-yxgQ1 

Here, as usual, j denotes the extension of -y by 0 on 0Q, \ F. 

Theorem B. Let Th be a regular family of triangulations. Assume that -Yh E Xr,h 

and that FIrXyh E Hr(rot; Q1) for a certain r E (1/2, 1). Then there exists a 
constant K2 > O, independent of h, such that 

F1,rFyh - Fr,Fh11H(rot;Qj) < K2h |jFlXr_yh 1Hr(rot;Qj) V _Yh E Xr,h- 

Theorem C. Let Mh be the family of triangulations of 0Q% induced by Th. As- 
sume that Mh is quasi-uniform. Then for each e E (0,1/2) there exists a constant 
K3 > 0, independent of h, such that 

1Yh 1Xa ? K3hP Yh`XF V 'Yh E Xr,h- 

Once we have established these results, we are in a condition to prove the fol- 
lowing 

Proposition 3.3. Assume that F is convex portion of 0Q, and that Mh is a quasi- 
uniform family of triangulations of 0%Q. Then there exists a constant K4 > O, 
independent of h, such that 

|((S1,hyh,rlh))h < K4 11Yh X1 xr 1 nh 1X1 V y/h) n/h E Xr,h, 

which is estimate (3.24). 

Proof. From the definition of the Steklov-Poincare operator Sl,h we have 

| (Sl,h_Yh, nh))hj| = lal (El h -h El, h) 

< 011 Eh r7hl I IH(rot ;Qi) Il lElX7hl Hrt;l 

where i31 > 0 is the continuity constant of a1(., -). Therefore, the proof is complete 
if we show that there exists a constant C > 0, independent of h, such that 

IE,rYh |1H(rot;Qj) < CII _Yh I I V Yh E Xr,h* 

Taking in (3.13) the test function V1,h = E yh we have 

a1(E1r,pYh, El 'rh) = a1 (El,ryh, Fl,ryh). 

Hence 

(3.28) 1 pE%h rzYI I IhH(rot;Qj) < , I F,rYhIIH(rot;Qj)i 

where a, is the coerciveness constant of the bilinear form a1(.,-). 
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Moreover 

(3.29) IFI,FYh IIH(rot;Q1) I Fl,rpY^h- F1rFhIIH(rot;Q1) + F1,FzyhIIH(rot;Qi); 

therefore, from (3.27) we only have to estimate the first term in (3.29). 
At first, remark that h - XF,h yields 'E X for each 6 E (0, 1/2), as both ' 

and divT )Yh are (discontinuous) piecewise-polyRomial. Therefore, from Theorem A 
we have that Fl,rFYh E Hl/2+6 (rot; Q1) for any 6 E (0, ,Q1]. Using also Theorem B 
(where r = 1/2 + 8) we have 

| |FI,rFYh - F1,rYh IIH(rot;Qj) < K2hA F1, F Y)r7h lH 1+6(rot ;Qj) 

< KIK2h 2 I lYh I IX&21 

Now we can apply Theorem C (for e = 8) and we find 

(3.30) IF%yh I - F,FYh I IH(rot;Ql) < K1K2K3 ||Yh I IXr 

The proof follows from (3.27)-(3.30). EZ 

Remark 3.4. In Theorem A and in Proposition 3.3 the assumption on F is only 
needed to assure that Xr2 is the space of tangential traces on F of VI. 

4. PROOF OF THEOREM A 

Let us introduce the finite dimensional spaces 

7-(e) {w E (L2(Q))3 rotw = 0, divw = 0, (n x w),aQ = 0}, 
Ht(m) := { E (L 2(Q)) 3 o ro ,di , n)l,aQ = 01. 

We start recalling the following theorems, whose proof can be essentially found 
in Saranen [16] (see also Valli [17]). 

Theorem 4.1. Let Q c R3 be a bounded domain with Lipschitz boundary &Q. 
Each function w E (L2(Q))3 can be written as 

n 

(4.1) w = rotp + Vq + I: akek, 
k=1 

where p satisfies 

rot rot p = rot w in Q 

divp = 0 in Q 
(4.2) 

(n x p),aQ = 0 on &Q 

(P,w) = ? V w E H(e), 

q satisfies 

Aq = divw in Q 

(4.3) (,) -= (W. n),aQ on o9Q 
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the functions {Qk}-k= are an orthonormal basis of 7-(m), and the coefficients alk 

are given by ak = (W, k), k = I, ..., n. 

Theorem 4.2. Let Q c R3 be a bounded domain with Lipschitz boundary oQ. 
Then there exists a constant CQ > 0 such that 

lwl jo,Q < CQ(I rotwl j,Q + I divwl loQ) V W E XT n0 (m) 
We are now in a position to prove some auxiliary results, which are interesting 

on their own as they are regularity results for harmonic fields. In the particular 
case in which the parameter 6 is equal to 0, Costabel [6] proved the same regularity 
result for a simply connected Lipschitz domain with connected boundary. 

Theorem 4.3 (Regularity for Dirichlet harmonic fields). Let Q be a Lipschitz 
polyhedron. Then for each 6 E (0,1/2) the space 

W := {w E H(rot; Q) n H(div; Q) I (n x w),aQ E (H8(OQ))3} 

is continuously imbedded in (Hl/2+e- (Q))3, where E6 = min(8, iQ)). 

Proof. From Theorem 4.1 each function w E W can be written as 
n 

(4.4) w = rotp + Vq + 
Eak L.k 

k=1 

Since rot rotp = rotw E (L2(Q))3, and (n x p)lI Q 0 yields (rotp p.n) I a 
-divT(n x p)lI Q = 0, we have that rotp E XT. Moreover, ek E 1t((m) c XT; 
hence, from Theorem 3.2 we find that rot p and each ek belong to (Hl/2+?I (Q))3. 
FRom aek (W, Qk) it follows at once that 

n 

(4.5) Zakl Q1Lk1 1+,K;Q < CIIWIIO ,Q 
k=1 

Moreover, it is easily verified that rot p E 7-(m)'; hence, from Theorems 3.2 and 
4.2 we have 

I rotp|| 1 +,-,Q < C|| rotpl xT 

(4.6) < C(1 + CQ) (I I rot rot Pl jO,Q + I div rot pl jO,Q) 
= C(1 + CQ)II rotwl j,Q. 

On the other hand, from 

Vq = (Vq. n),aQn - n x (n x Vq),aQ 
we have 

VTql,Q =-n x (n x Vq)j, 
and therefore 

VTq7qaQ= -nx ((nxw),Q-(nxrotp),aQ-(n XakLok) a . 

The unit normal vector n is piecewise constant, as Q is a polyhedron; hence, 

VTqlaiQ E (H,*(Q))3. 

From q E H1(Q) we also have that qla- E H1/2(&Q) C L2(&Q); therefore, we 
conclude that 

qlaQ E H1l+* (&Q) 
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and we find the estimate 

IIqjQII?+E*,aQ < C( Iq IO,aQ + VII7TqjQI6,aEQ) < C( Iq I1,Q + IVTqjaQI , &aQ) 

< C(||WIO Q + 11, n (nx W) QII6,&Q 
n 

+ || rotpII 1 +?Q,Q +Z ak I IQek I?,IQ) 
k=1 

Since Aq = div w E L2(Q), from the regularity results for the Dirichlet boundary 
value problem for the Laplace operator it follows that q E H3/2+e* (Q) (see Dauge 
[7], Corollary 18.13), and 

(4.7) I7Vq I1 +E Q < I ?lqlI3+E* Q < C(II divwlO,Q + IIqjaQII1+E?,aQ). 

From the representation formula (4.1) we finally have w E (H3/2+?* (Q))3 and from 

(4.5)-(4.7) 
n 

w lW I 1 +E?Q < I I rot p I 1 + IVq I 1 +EA,Q + G lak I I I Qk I I 2 +r?>Q 
(4.8) 2k221 

< C( IIWo,Q + I rotwl O,Q + I divw Io,Q + II(n x w)laQ 116,aQ), 

which concludes the proof. EZ 

A similar result is the following 

Theorem 4.4 (Regularity for Neumann harmonic fields). Let Q be a Lipschitz 
polyhedron. Then for each 6 E (0,1/2) the space 

V := {w E H(rot; Q) n H(div; Q) I (n w) laQ E H6(&Q)} 

is continuously imbedded in (Hl/2+?* (Q))3, where e* := min(6, 'Q)). 

Proof. As in the proof of Theorem 4.3, we use the representation formula (4.1). 
The first and the third term can be treated as done there; hence, we have only to 
check the regularity of q. 

It is the solution of a Neumann boundary value problem for the Laplace operator 
with L2(Q) right-hand side, and H6(&Q) Neumann datum. As a consequence of 
Corollary 23.5 in Dauge [7] we have that q E H3/2+e* (Q) and 

IlVqll 1 +E*Q < C(Il divwllo,Q + 11(n .w)jaQII8,aDQ). 

Using (4.5), (4.6) we finally have 
n 

w lW I 1 +E?Q < I I rot p I + IVqI I 1 +E*,Q + E |lk I I I Lk I I 
(4.9) 2k221 

< C(IIwIIO,Q + 11 rotwllo,Q + 11 divwllo,Q + 11(n * w)jaQII,5&aQ) 

and the proof is concluded. EZ 

We are now in a position to give the proof of Theorem A. 

Proof of Theorem A. Fl,r-y E H(rot; Q1) satisfies 

rot rot F1,r,Y + F1,r,-y = 0 in Qj; 

therefore, divF,r,-y 0 O in Q1. We can apply Theorem 4.3 and we find that 

Fj,poy E H1/2+6(Q1) and 

I IF1,rzyl 1,Ql 
? C(l 

IF1,rzyl H(rot;Ql) 
+ I 8llaQJ) 



622 ANA ALONSO AND ALBERTO VALLI 

Assuming that F is convex portion of 9Q1, from (3.27) we finally have 

(4.10) | 1Fl,r-yl I 1+6,Q1 < C(Q IY I 6,aQ1 + I IdivTI -1/2Q1) 

Let us denote by Gl,r-y := rot Fl,r-y. We first notice that 

(Gl,r-y. n) IaQ, =-div,-y E H6 (09Q,) 

and that rot Gl,r-y =-Fl,r-y E (L2(Q1))3. We tan apply Theorem 4.4 and we find 
that G1,r,y E H1/2+6(Q1) and 

IGl,ryl I,Q1 < C( IG1,ry IH(rot;Ql) + IJdivTj 16,Q1). 

On the other hand, it is at once verified that 

I IGi,pyi |H(rot;Qj) < Cl F1 r,-y |H(rot;Q1); 

hence, from (3.27) 

(4.11) 1 rot F1j,ryj +6,Q1 < C( 1y 1-1/2,r + I divTj 16,Q1). 

FRom (4.10), (4.11) we have 

(4.12) IF1,rzyl H2+6(rot;Qj) < K1 IjjjX&Q1 ' 

which concludes the proof. 

5. PROOF OF THEOREM B 

The proof of Theorem B is based on the estimate for the interpolation error. 
Let us recall that the finite elements we are going to employ are the Nedelec finite 
element of first type (however, as we already noticed, the same results hold also for 
the Nedelec finite element of second type introduced in [13]). They are defined for 
k > 1 as 

(5.1) NkhJ {Vh E H(rot; Q) I VhK E Rk V K E Thl, 

where 

Rk = (Pk-1) e Sk, Sk :={P E (P)3 p(X) X } 

and P* is the space of homogeneous polynomials of degree k. The degrees of 
freedom of N/k are given by 

(5.2) ml (v) {Jv * ta q for all q E Pk-l(a) for the six edges a of 

where ta is a unit vector having the same direction as the edge a; when k > 2 one 
has to add 
(5.3) 

m2(v) {j(v x n) * q for all q E (Pk-2(f))2 for the four faces f of K}; 

and finally for k > 3 one has to take also 

(5.4) m3(v) := v v q for all q E (Pk-3(K))3} 

Nedelec [12] has proven that these degrees of freedom are "curl-conforming" and 
determine a unique element of Rk. Let us denote by Ilk the interpolation operator 
valued in Nh . 
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Lemma 5.1. The interpolation operator Ilk is defined in Hr(rot; Q) for any r > 
1/2. 

Proof. It is only necessary to see that the moments introduced in (5.2)-(5.4) are 
well defined. 

If v E Hj(rot;Q) for r > 1/2, then in pQrticular VIK E (Hr(K))3 and from 
the trace theorem Vlf E (L2(f))3; therefore, the moments m3(v) and m2(v) are 
defined. 

Concerning the moments m1(v), let a be one of the edges of a face f. Denote 
as usual by n the unit outward normal vector on OK and by v the unit vector 
contained in the plane identified by f, pointing outward f and normal to a. The 
unit vector ta can be written as ta = n x v. Therefore we have 

(5.5) j V *ta q = jv.(nxv) q= (v x n) v q. 

From the assumption on v we know Vlf x n E (Hr-1/2(f))3 and divT(vIf x n) 
(rot v) If n E Hr-l/2 (f); hence, in particular VIf x n E (LP(f))3 for a suitable p > 2 
and divT(vlf x n) E L2(f). This easily yields ((vlf x n) v)laf E W-1/P'P(Of) and 
then the moments ml(v) are defined by means of a duality argument. EZ 

Now we want to prove that 

(5.6) 
_ |-lHVI H(rot ;Q) Chin(r,k) I IVIHr(rot ;Q) Vv E Hr (rot; Q), 

where, as before, r > 1/2 and k > 1. 
This result is already known when r > k, as for any v E Hk(rot; Q) Nedelec [12] 

has proven 

(5.7) ||V- Fhv||o,Q? ? Chk (IVk,Q + I rotVIk,Q), 

and Monk [11] has obtained 

(5.8) rot(v-Iv) oQ < Ch k I rot v Ik,Q 

By following their proofs, it is an easy matter to verify that (5.6) holds also for a 
positive integer r, r < k - 1. Therefore, we are left with the proof of (5.6) in the 
case of a non-integer r, 1/2 < r < k. 

The reference tetrahedron k is the one with vertices Po := (0, 0,0), P1 I 
(1,0,0), P2 := (0,1,0) and P3 := (0,0,1), and each tetrahedron K E Th can be 
obtained from K by means of an invertible affine map FK (X) = BKX + bK- 

Let us denote the local interpolation operator by Hk. The relation 1k4(VIK) 
(hIK clearly holds. Moreover, as in Nedelec [12], consider the map 

V BKV FK, 

which easily yields (FJ%y)A = 'V. K K 
Finally, for the sake of convenience we introduce the matrix 

0 QV2 - aV1 QV3 aV1 
(X1 TX2 TX1 &X3 

Rot v : &vl _ 
V2 0 09V3 -9V2 09X2 &9x1 0X2 19X3 

&V1 - &V3 &V2 - &V3 0 
&X3 &X 1 &X3 &X2 
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in such a way that 

Rot v (x) = (BKT ) -1Rotv (FK 1(X) ) BK1 

We have 

Lemma 5.2. Let Th be a regular family of triangulations. Then there exists a 
constant C > 0 such that 

|V|O,K < ChKI I_q2 

2 < Ch-1lIrt_ 12 11 rotv| oK ?ULK rotv K 

for each v E H(rot; K) and K E Th. 

Proof. The procedure is classic, and we report it here for the sake of completeness. 
Firstly we have 

o O,K JV v(X) 2dx J (BT)_(Fk1(X))I 2dx 0 
K K 

I detBK J (BK) V(X)2 dx 

< I detBK| I|(BK l1211_q2II K 

Analogously, 

rotv |,K vJ Rot v(x) dx= J l(B ) 1Rot v(F,K1(x))BK1 2dx 

I 
I det BKI I (BT)-1 Rot() B1 122d 

2KK 
< Cl detBKI II(BT) 11 I2B- 12 1 rotv_l 2 

The proof then follows by noticing that I I BK1 1 1 < ChK-1 and I det BKI < Ch 3 . E 

Using this Lemma we find 

(5.9) v _ IlIk(rot;K) < C(hKjj- - II K + hA-11 rot(v - 1KV)II oK)- 

Now we want to write the term rot(Hk v~) in an equivalent form. 
To start with, let us consider the case k > 2. As in Nedelec [13], for 1 > 1 

introduce the finite element space 

Mh = {Vh E H(div; Q) I VhIK E (Pl)3 V K E fh} 

with the moments 

mil(v) := {j(v. n) q for all q E Pi(f) for the four faces f of K 

at which one has to add, in the case 1 > 2, also 

n2(V) := vq{Jv for all q q E Rj-i(K)} 

These moments are "div-conforming" and determine a unique element of (Pi)3. We 
will denote by 1rh the interpolation operator related to Mjh, which is clearly well 
defined and continuous in (Hr(Q))3, r > 1/2, and by 1rK the local interpolation 
operator. Again, we have 7rK (VIK) = (7rhV)IK- 

The following lemma was proved by Nedelec in [13], Proposition 2. 
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Lemma 5.3. For each function vr E Hr(rot; k), r > 1/2, and for each k > 2 the 
following relation 

rot (IIK =r 1k- (rotv 

holds. 

Notice that the proof in [13] refers to the curl-conforming Nedelec elements 
of second type; however, the curl of the interpolant is the same for both types 
of Nedelec elements. Notice also that (though not explicitly underlined) in [13], 
Proposition 2, it is assumed that k - 1 > 1, i.e., k > 2. Finally, there the result is 
stated for vr E H2(K), but this assumption can be weakened, as a consequence of 
Lemma 5.1. 

Consider now the case k = 1. We denote by fi the face of K orthogonal to the 
axis xi, i = 1, 2,3. The following operator ir% : (Hr(K))3 -R I 

,7r?^v -2 f 

is clearly well defined and continuous for each r > 1/2. Moreover 

Lemma 5.4. For each function v~ E Hr(rot; K), r > 1/2, the following relation 

rot (H I V) = 7r?^ (rot v 

holds. 

Proof. As k = 1 we only have to deal with the moments of the first type ?1n(j) 

fa V ta. Denote by ?nmS(v) the degree of freedom on K associated to the edge aS, 
s 1,...,6, where a1 = PoP1, a2 = PoP2, a3 = PoP3, a4 = P3P2, a5 = PIP3 
and a6 - P2 P1. It can be easily shown that the basis XS of R1 on K satisfying 

m5nS(Q4j) =,j is given by 

+1 =b ( ) 2 ( (1- i- 

"P4 () 5 0 i) "P6 

Let us notice that 
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and therefore 

7tm2 (v) -m3 (v) -m4(v 

rot(H )= 2 1(v) + m3() - m5n(v) 

Taking the unit vector t n x v as in Lemma 5.1, it follows that 

/ ,fl-t\ fflrt- \ 

rot (1v =2 A02vt2 =-2 Sf OV r? (rotv 

faf3 Vt3 yf3 rot v n 

having used the Stokes Theorem on each face fi. EZ 

We are now in a position to consider the operators 

I- rk^: Hr(rot, K) -*> (L2(K))3, I _ 1k-I (Hr(k))3 _ (L2(K))3 

which are clearly linear and continuous. Since we are dealing with a non-integer r, 
with 1/2 < r < k, it follows that the integral part [r] of r satisfies [r] < k-1. Hence, 
the operators above take value zero for each polynomial in P[r], and applying the 
Bramble-Hilbert Lemma we find 

(5.10) 1 1 (I-_rjk ) 1K < C inf)3 
I 
1 + P Hr(rot;K) 

( 5 . 1 ) ( _ 
K1) rot v K < C inf rotV+ | 2 IK K 0 ~ C([r)3 r,kl 

By repeating the proof of the Deny-Lions Lemma we finally have 

(5-12) inf 1_ + P 12 < C( l12'K + I rot C(2 [r]K + I rot _I12fK)' 
]WPm 

)3 Hr (rot; k) rot r 

(5.13) inf II rotv + P|1 < Cl rot v_r K. 
]W Pm )3 r,k ~~~ri,K 

We recall that for an integer k the semi-norm in (Hk(Q))3 is defined as 

jal=k 

whereas for a non-integer value s it holds 

where for 0 E (0,1) we have set 

( V(X) -(2 \ 1/2 1k- ~3+20ddS 
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From (5.9)-(5.13) we have thus obtained 

- 1I K V H(rot K) < C(hKj V- + hK | rot . -7r (rot ) 
<C [hK(1 1r + I rot _[12 K + I rotv K) + h- | rotv 1K 
< C [hK(112K + I rot K)2 + h+K rot K]j2 

We need the following result. 

Lemma 5.5. Let Th be a regular family of triangulations. Then there exists a 
constant C > 0 such that 

| '2 < ChK s,K 

I rot vJ 'K < Ch+2 | rot VSK 

for each real number s > 0. 

Proof. We will present the proof only for 0 < s < 1, the other cases being standard. 
We have 

KJftJft 
= IV(X){V(4I) 

2 dxdy 

I detBK J 12 
IB?_l(x )(13+2 dxdy. 

We can write 

|x-yl -BKB-l(x-y)l < IIBKII IBKl(x-y)J; 

therefore, I B1 (x - y) I > IIBK |1 IX-y y. Hence, 

{V2S K < | det BK2 | | BK l l3?2sJJ I B( (X) -v(y))2 dxdy 

<CdetBKI | BK 13+2| Bd | sK 
K~~~~~~~~ , ? Ch- 1+2sIV|S2 

In an analogous way 

_'12 
1 Rot ()Rot 

12 

rotv 2JfJJft J3+2s dd 
1 -2f JA v ((x) Rotv(x) -Rotv(y))BK 
-I detBK JK JK B(Xy)3+2Sdy 

< Cl detBKK 21 BKl 5+2sllBTl 2 rotv12 
K rotvS,K,~~~ 

9, 
? Chl +2s 1 rot V12 

which concludes the proof. EZ 

We can conclude with the following interpolation result. 

Proposition 5.6. Let r be a non-integer with 1/2 < r < k. Let Th be a regular 
family of triangulations. Then there exists a constant C > 0, independent of h, 
such that 

(5.14) V _v- lkVI|H(rot ;Q) ? Oh C llv IHr(rot ;Q) 

for each v E Hr (rot; Q). 
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Proof. Using the additivity of the integral we can write 

| \T hV H(rot;Q) - 
( I K 0K +II rot v- K Irot 0K k K) 

K E Th 

< [hK(IK+ I rot4]t) + hK rotI 1K]2 - 
KESh~~~~~ K E Th 

From Lemma 5.5 we find 

V kI<H(rot;Q) ? S [hK(h-I+2rIVK +2[h l rotV12 

+hK hK+hr |rotvr,K] 

<( CS(hK ) K +Kh[ ] rot v [ + hK[ rotvrK) 
KETh 

<~~ Ch |ro |Vv.r(,K;Q 

and the thesis is proved. EZ 

The estimates (5.7), (5.8) and (5.14) yield the interpolation estimate (5.6), and 
we are now in a position to conclude the proof of Theorem B. 

Proof of Theorem B. We are going to follow the lines of the proof of Cea Lemma. 
We have 

(5.15) 

I F1,pYh - Fh,r^H(rot;Q1 ) ((FlrYh -Fh r^h,Fl Fah-hF,hF1, 

((FI,h - F ,Pyh, F1,ph-Hk F,ryh+ HIFl,rk h- Fl,Fh))Ql. 

Let us take now ah E XF,h. A basis 41 j in Xr,h is given by (nrf x +bjj)jr, where 

+1,j are basis functions of V1,h. Moreover, due to relation (5.5), for any tangential 
element -y E (Hr-l/2(r))3 n H(divT; F) the degrees of freedom related to Xr,h are 
given by- f y-vq for each q E Pk-l(a) and by-ff -y q for each q E (Pk-2(f))2, 

where a and f are any edge and face of F, respectively. Therefore, for any vi E 
Hr(rot;Qi) the interpolant on F of (nr x v1)Ir is given by (nr x IXkvI)Ir; hence, 
(flp X FJhF1-r^yh)lrp = ^h Consequently, we have (FhJF ,r-yh I rF Yh) E Vl2h and 

((F1,pyYh - ,h, H F,ryh -Fl,PYh))Ql = 0- 

Hence we find 

F1,ryh -IFr,Fyh IIH(rot;Ql) ? |F,iYh -fhFl,rYh IIH(rot;Qi)- 

FRom the assumption FI,p_yh E Hr(rot; Q1) and the interpolation inequality (5.6) 
we finally find 

|IFI,n - F ,hyh | H(rot;Ql) < K2hr IIFI,Fyh | Hr(rot;Qj), 

and Theorem B is completely proved. 
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6. PROOF OF THEOREM C 

We have to prove that if Mh is a quasi-uniform family of triangulations of OQ, 
then there exists a constant C > 0 such that for each nh C XaQ,h it holds 

(6.1) I lnh I E,aQ + JJdivT,'h1E,aQ < Ch-2 -(|1h| -1/2,aQ + I divTr,h11-1/2,aQ)- 

Noticing that both 7lh and divT 7lh are polynomials in each triangle on OQ, one can 
apply the inverse inequality for the non-integer exponent e obtaining 

(6.2) 1l1nhile,aQ + IJdivr_,hIIe,aQ < Ch(|(J 17h1I0,&Q + IldivTr7h O ,&Q)- 

It remains for us to show that for each real scalar function Zh c L2(&Q) and such 
that ZhIT C Pk for each triangle T E Mh we have 

(6.3) |JZhJ0,aQ < Ch- / JZhJ1-1/2,aQ* 

A similar result in the two-dimensional case can be found in Quarteroni, Sacchi 
Landriani and Valli [14]. We are going to adapt their proof to the case under 
consideration. Let us set Mh :_ {v C H1(&Q) IVIT E Pk+3 V T E Mh}. For 
each q E L2(&Q) denote by qh the L2(&Q)-orthogonal projection of q onto Mh. 
Moreover, denote by q5* the function belonging to Mh which is defined as 

(6.4) OhIT =hIT + E3 (q - qh4 [M(x)1])TPo,T, 

where M(x) is the rigid motion sending T on the (x, y)-plane with one vertex in 
(0, 0), and Po,,T E Pk+1 satisfies Po,,TlaT = 0 and 

(Po,T, [M(X)])T = 1 if a-3 l lal,/3 < k. 

Clearly, the function ZhIT can be written as a linear combination of [M(x)], oe, < k; 
therefore, it follows at once that fQZhc f Zhc/4 for each h E L2(Q), and we 
have 

IJZh 10,aQ = SUP SUP 
0EL2(aQ) 10 1L2(&Q) 1110,Q 

JZhJJ-1/2,&Q J10**111/2,&Q 

000~~~~0& 

By using the inverse inequality as in (6.2) we obtain 

ll0*111/2,aQ < Ch 1/2 k 10*aQ; 

hence, 

1Zh40,&Q 
< Ch- IZh I-1/2,aQ SUP 

2 (aQ) 11X1IOA 
=A 0 

To conclude the proof, we have to show that 

(6.5) | h*| |O ,aQ < C1 | |0X ,Q. 
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We have 

qfoh 4O*aQ =:: llh OT J ( +h (-h [M(X)] )TPST 
TEMh TEMh \ Mal<k 

< C05 ( 12 + E (0* , [M(X)]o,)P2 T) 
TEMh T 5 al <k 

L TEMh ( jJlP T)] 

By a straightforward computation it can be shown that 

max J[M(X)]2o ,,T 2 C, TEMhI jPo,T ?0, 

uniformly with respect to h, and (6.5) follows by recalling that /* is the L2 (&Q)- 
orthogonal projection of 0 onto Mh. 
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